TERRESTRISCHE PLANETEN

Das Sonnensystem und seine nächsten Verwandten für Nicht-Physiker

MARKUS PÖSSEL

HAUS DER ASTRONOMIE

UNIVERSITÄT HEIDELBERG, WS 2022/2023

STERNE VS. PLANETEN, SONNENSYSTEM-EDITION

Bild: NASA

Bild: NASA, ESA, A. Simon (GSFC)

Bild: SOHO (ESA & NASA)

	Erde	Jupiter	Sonne
Radius:	1	11	109
Masse:	1	320	333000
Dichte:	1	0.24	0.26
Effektivtemperatur:	255 K	88 K	5777 K
Leuchtkraft:	10 ⁻¹⁰	10 ⁻⁹	1

TERRESTRISCHE PLANETEN

Bild: NASA/JPL

Bild: NASA/JPL

Bild: NASA

Bild: NASA/JPL-Caltech/ University of Arizona

	Merkur	Venus	Erde	Mars
rel. Radius:	0.38	0.95	1	0.53
rel. Masse:	0.06	0.82	1	0.11
rel. Dichte:	0.99	0.95	1	0.71
Dichte [g/cm ³]	5.4	5.2	5.5	3.9
unkomprimierte Dichte:	5.3	4.4	4.4	3.8
Sonnenabstand:	0.39	0.72	1	1.52

Unkomprimierte Dichte: Kompression durch Gravitation herausrechnen

- Energiebilanz incl. Strahlungsbilanz, Treibhauseffekt
- Innenleben incl. seismische Wellen
- Magnetfeld und Sonnenwind/Sternwind
- Vulkanismus, Tektonik
- Kraterbildung und Erosion
- Atmosphäre, Ozeane

Strahlungsbilanz

Einfache Rechnung: Sonne und Planet als thermische Strahler jeweils mit Effektivtemperatur T_{eff} :

$$L_{\odot}=4\pi R_{\odot}^2\cdot\sigma_{SB}T_{eff,\odot}^4$$

- Geometrie (Auffangfläche = Querschnittfläche, Abstrahlungsfläche = Oberfläche)
- Albedo A gibt reflektierten Bruchteil an

$$T_{\rm eff,P} = T_{\rm eff,\odot} \frac{(1-A)^{1/4}}{\sqrt{2}} \sqrt{\frac{R_{\odot}}{a_P}} = 278 \text{ K} (1-A)^{1/4} \sqrt{\frac{1 \text{ AE}}{a_P}}$$

Details und Rechnung siehe Handout

TEMPERATUREN VON PLANETEN

TREIBHAUSEFFEKT, VEREINFACHTES MODELL

Neue Strahlungsbilanz: $T_{eff,ob} = 2^{1/4} T_{eff,atm} \approx 1.19 T_{eff,atm}$

Für Erde wäre das 302 K [29°C] vs. 254 K [-19°C] ohne Treibhaus. Real: 287 K [14°C]

[Realität komplizierter: Schichten, Energieaustausch durch Konvektion in Troposphäre]

Selektive Durchlässigkeit der Erdatmosphäre

Diagramm nach Daten des TAPAS-Web Service http://cds-espri.ipsl.fr/tapas/, Bertaux et al. 2014

Grundlegende Einschränkung für Astronomen:

- UV, Röntgen direkt nur mit Weltraumteleskopen
- Bestimmte Infrarotbereiche nur in großer Höhe/Weltraum/Flugzeug
- Sichtbares Licht, Nahinfrarot, Radio gut vom Boden aus

Treibhauseffekt

Bild: "Von der Atmosphäre übertragene Strahlung" von Robert A. Rohde via Wikimedia Commons. Wellenlänge in μm. Eigene Veränderungen: nur obene Hälfte gezeigt, ohne Überschrift. Lizenz: CC BY-SA 3.0

ENERGIE AUS ENTSTEHUNGSPROZESS

Energie aus Kollaps aus protoplanetarer Scheibe: Potenzielle Energie umgewandelt in Wärme

Auf bereits vorhandene Kugel mit Dichte ρ und Radius *r* eine weitere Schicht der Dicke d*r* und gleicher Dichte auftragen:

$$dE_{K} = dm \cdot \frac{GM(r)}{r} = 4\pi r^{2} \rho \, dr \cdot \frac{4}{3} \pi \rho r^{2} = \frac{16\pi^{2}G}{3} \rho^{2} r^{4} dr$$

Aufintegrieren von 0 bis R:

$$E_{K} = \int_{0}^{R} \mathrm{d}r \frac{16\pi^{2}G}{3}\rho^{2} r^{4} = \frac{16}{15}\pi^{2}G\rho^{2}R^{5} = \frac{3GM^{2}}{5R}$$

– bei konstanter Dichte ρ (Vereinfachung)

Für terrestrische Planeten: Kollapsenergie E_K , einfallende Sonnenstrahlung über ein Jahr E_{S1a}

	Merkur	Venus	Erde	Mars
E_{κ} [J]	$2\cdot 10^{30}$	$2\cdot 10^{32}$	$2\cdot 10^{32}$	$5\cdot 10^{30}$
E _{S1a} [J]	$5\cdot 10^{24}$	$2\cdot 10^{24}$	$4\cdot 10^{24}$	$5\cdot 10^{23}$
E_{K}/E_{S1a}	4 · 10 ⁵	10 ⁸	$5\cdot 10^7$	10 ⁷

Vergleiche E_K/E_{S1a} mit Alter des Sonnensystems: 4.5 · 10⁹ Jahre

Tatsächliche Wärmeflüsse (Dye 2012):

 $(11...39) \cdot 10^{12}$ W (Radioaktivität) + $(5...38) \cdot 10^{12}$ W (Kollaps) = $(43...49) \cdot 10^{12}$ W (gesamt)

INNENLEBEN

Allgemein drei Dichtezonen:

- Kern (am dichtesten, oft Eisen ggf. äußerer Kern flüssig, innerer Kern fest)
- Mantel (weniger dicht, Silikate/Magnesium, Festkörper aber formbar/fließend)
- **Kruste** (am leichtesten)

Innenleben — woher weiss man davon überhaupt?

- Seismische Wellen: Ausbreitungsgeschwindigkeiten, Beugung/Brechung an Grenzen
 - P-Wellen: longitudinal (in flüssigem und festen Medium)
 - S-Wellen: Schwerwellen, nur in festem Medium
 - K in der Abb.: Kompressionswellen im Kern
 Weitere Info: Vortrag zu Mars InSight
- Gravitationsfeld vermessen:
 Umlauf der Sonde oder Sonden (GRACE),
 Radio-Abstandsmessung
- Merkur: Leichte Variationen der gebundenen 3:2 Rotation/Libration um die Sonne

ABKÜHLUNG: EINE FRAGE VON VOLUMEN VS. OBERFLÄCHE

- Im Mantel ggf. Konvektion
- Kruste: Wärmeleitung
- Vulkanausbrüche/austretende Lava

Schlüssel: Größe des Himmelskörpers!

Vorhandene Energie (Kollaps, Radioaktivität)

$$\sim V = \frac{4}{3}\pi R^3$$

Abstrahlung ins All

$$\sim F = 4\pi R^2$$

Auskühl-Zeitskala ~ 1/R (vgl. Babies)

MAGNETFELD

Bild: N. Schaeffer/ISTERRE (Schaeffer et al. 2017)

Dynamo: Selbstverstärkendes Magnetfeld durch hinreichend schnell rotierendes, elektrisch leitendes Inneres (äußerer Kern) und Konvektion (Wärmetransport durch Massentransport)

MAGNETFELD UND SONNENWIND

Bild: NASA via Wikimedia Commons, SVG-Version: Aaron Kaase

Terrestrische Planeten: Magnetfelder

Bild: NASA/JPL

Bild: NASA

Bild: NASA/JPL-Caltech/ University of Arizona

- Merkur: Schwaches Dipol-Magnetfeld, Magnetosphäre: Flüssiger Kern mit Dynamo? Oder "eingefrorener" Rest?
- Venus: Kein Kern-Magnetfeld fehlende Konvektion und/oder zu langsame Rotation
- Erde: äußerer Kern geschmolzen, vergleichsweise rasche Rotation (Mondentstehung!), Konvektion
- Mars: frühes Magnetfeld, jetzt nicht mehr fehlender Dynamo: fehlende Konvektion, komplett flüssiger Kern; Kruste stärker magnetisiert als gedacht

VULKANISMUS UND TEKTONIK

Bild: USGS/USGov, modified by Eurico Zimbres and User TomCatX, via Wikimedia Commons

Vulkanismus

Schildvulkan Mons Olympus auf dem Mars. Bild: NASA/MOLA Science Team

- Abhängig von Krustendicke
- Lava-"Flutung" kann Oberflächen erneuern (z.B. Mare auf dem Mond)
- Eintrag von Gasen in die Atmosphäre (z.B. ursprüngliches CO₂)
- Klima-Beeinflussung durch Aerosole

(z.B. Temperaturreduktion > 0.5°C durch Krakatau-Ausbruch 1883)

KRATERBILDUNG MIT EJEKTA

Film: Astronomiekurs Science Academy BW 2012

Namenloser Krater, Durchmesser 1.8 km. LRO-Aufnahme vom 3.11.2018. Bild: NASA/GSFC/Arizona State University

KRATER UND OBERFLÄCHENERNEUERUNG

Mare Crisium auf dem Mond, Durchmesser 560 km. Bild: NASA's Lunar Reconnaissance Orbiter via Wikimedia Commons

Manicouagan Impact Structure, Quebec. 5 km-Meteorit vor ca. 214 Millionen Jahren. Bild: NASA/GSFC/LaRC/JPL, MISR Team

- Krater sammeln sich mit der Zeit an
- Kumulative Statistik ermöglicht Abschätzung des Zeitpunkts der letzten Erneuerung
- Kalibration der Relation durch Mondregionen mit radioaktiver Altersbestimmung
- Extrapolation auf innere Planeten bis Mars
- Verallgemeinerung auf äußeres Sonnensystem schwierig — Zusatzannahmen nötig

Bild rechts: Kraterstatistik Medusae Fossae Formation, Mars. Zimbelman & Scheidt 2012

Minimal-Oberflächenveränderungen:

Mechanische Einwirkung und Wärmeeeinwirkung von Einschlägen sowie hochenergetische Sonnenstrahlung erzeugen Regolith als nicht-irdisches Lockermaterial

Apollo 17-Mission der NASA, Taurus-Littrow-Region des Mondes

EROSION: ZERSETZUNG DURCH WASSER, EIS, WIND

Red Rock Canyon State Park, CA. Bild: Alluvial Plain von Matt Affolter via Wikimedia Commons unter CC BY-SA 3.0

Strömungsmuster im Kasei Valles, Mars, als Spuren früheren fließenden Wassers. Bild: NASA/JPL-Caltech/Arizona State University

Charakteristische Formen und Muster: Abbruchkanten, Strömungsmuster, Dünenketten Auf der Erde zusätzlich: Spuren von Leben (Pflanzen, Moose, ...)

Siehe Video zur Ergänzung von Solmaz Adeli (DLR) zu Wasser auf dem Mars

Atmosphäre und Ozeane

- Haltbarkeit abhängig von Größe, Sonnennähe, Magnetfeld (Teilchenstrom)
- Chemische Zusammensetzung beeinflusst durch Vulkanismus
- Kreisläufe und Gleichgewichte (z.B. CO₂ auf der Erde im Wasser gelöst)
- Erde: Einfluss von Leben (Sauerstoff-Atmosphäre: Blaualgen vor 3.5 Mia. Jahren, Bindung von Kohlenstoff in Skeletten/Schalen) (wichtig für Nachweis von Leben auf Exoplaneten!)

ERDÄHNLICHE EXOPLANETEN?

Vergleichbare Prozesse bei erdähnlichen Planeten — oder doch noch etwas ganz Neues? Detailaufnahmen fehlen — Modellierung wichtig, angefangen bei Atmosphären

Skalierung jenseits des Sonnensystems, Beispiel Wasserplaneten:

Bei konstantem Volumenanteil f_W des Wassers skaliert mittlere Wassertiefe wie

 $d = R_P [1 - (1 - f_W)^{1/3}]$

mit R_P Planetenradius (Erde $f_W = 0.001$ und d = 2 km)

Bild: ESA/Alexander Gerst

26

Terrestrische Planeten: Solide Oberfläche, ggf. dünne Atmosphäre

- Energiebeiträge
 - Entstehung
 - Impakte
 - Radioaktivität
 - Einstrahlung
- Wenige Grundprozesse am Werke:
 - Tektonik
 - Einschläge
 - Vulkanismus
 - Erosion
- Größe als Schlüsselfaktor: thermische Entwicklung, Magnetfeld
- Atmosphäre abhängig von Chemie, Sternabstand, Größe