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History of Gravitational Lensing

Development

• Soldner calculated deflection of the light by assuming it as
massive particles 1804

• 1911 Einstein employed the equivalence principle and
re-derived Soldner’s formula

• in 1915 Einstein applied the full field equations of General
Relativity and discovered twice the deflection angle caused
by space-time distortion

• this predicted a deflection of 1”7 of light grazing
tangentially the sun’s surface Ñverified in 1919 during the
eclipse of the sun
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History of Gravitational Lensing

Deflection of light rays

Figure : Angular deflection of a ray passing close to the limb of the
sun
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History of Gravitational Lensing

• 1920 Eddington noted the possibility of multiple lightpaths
connecting a source and an observer
Ñmultiple images of a single light source (although the
chance to observe was assumed very little)

• 1937 Zwicky pointed out that galaxies could do that and
also magnify distant galaxies
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Lensing by Pointmasses

Figure : Illustrated, perturbed spacetime
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Lensing by Pointmasses

Deflection by Pointmasses

We’re assuming a
Friedmann-Lemaître-Robertson-Walker-metric (homogeneous
and isotropic) with only local perturbations
Ñlocally Minkowskian spacetime

• the refraction index n can now be approximated by the
Newtonian Potential Φ as

n « 1 ´
2
c2 Φ Φă0

“ 1 `
2
c2 |Φ|

• the speed of light changes to

v “
c
n « c ´

2
c |Φ|
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Lensing by Pointmasses

We can compare this to the deflection by a glass prism:

Figure : Light being deflected by a prism
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Lensing by Pointmasses

We can now calculate the time delay of the light signal, the so
called Shapiro Delay (1964):

∆t “

ż observer

source

2
c3 |Φ|dt

As also the deflection angle α̂:

⃗̂α “ ´

ż

∇⃗Kndl “
2
c2

ż

∇⃗KΦdl

But as α̂ is always very small we can just integrate along an
unperturbed light ray
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Lensing by Pointmasses

Figure : Light deflection by a
point mass. The unperturbed light
ray passes the mass at impact
parameter b and is deflected by
the angle α̂
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Lensing by Pointmasses

• we get the Newtonian potential of the point
mass M as

Φpb, zq “ ´
GM

pb2 ` p∆zq2q1{2

ñ ∇⃗KΦpb, zq “
GMb⃗

pb2 ` p∆zq2q3{2

• using this to calculate α̂ we get

α̂ “
2
c2

ż

∇⃗KΦ dz “
4GM
c2b (1)

which is simply twice the inverse of the impact
parameter in units of the Schwarzschildradius
RS “ 2GM

c2
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Thin Screen Approximation

Thin screen Approximation

As the lens is comparably thin to the total extend of the light
path we will consider it as a lens plane which is characterized
by its surface mass density Σ:

Σpξ⃗q “

ż

ρpξ⃗, zqdz

Our formula (1) will change to

⃗̂αpξ⃗q “
4G
c2

ż

pξ⃗ ´ ξ⃗1qΣpξ⃗1q

|ξ⃗ ´ ξ⃗1|2
d2ξ1,

where the deflection angle ⃗̂α at position ξ⃗ is due to the sum of
all mass elements in the plane.
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Thin Screen Approximation

Figure : Illustration of the thin screen approximation
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Thin Screen Approximation

If we assume the lens being symmetric, we can shift the
coordinate origin to the center of symmetry, so we will get the
easier formula

⃗̂αpξ⃗q “
4GMpξ⃗q

c2ξ

with
Mpξq “ 2π

ż ξ

0
Σpξ1qξ1dξ1
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Lensing Geometry

Lensing Geometry

Figure : Illustration of a gravitational lens system from Source S to
Observer O
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Lensing Geometry

We define the reduced deflection angle

α⃗ “
Dds
Ds

⃗̂α

and the lens equation:

β⃗ “ θ⃗ ´ α⃗pθ⃗q. (2)

We now assume a constant surface mass density. (1) gives:

αpθq “
Dds
Ds

4G
c2ξ

pΣπξ2q
loomoon

Mpξq

“
4πGΣ

c2
DdDds

Ds
θ

where we set ξ “ Ddθ.
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Lensing Geometry

We can now also define the critical surface mass density Σcr,
where αpθq “ θ ô β “ 0

Σcr “
c2

4πG
Ds

DdDds
“ 0.35 g

cm2

ˆ

1Gpc ¨ Ds
DdDds

˙

The lens so focuses perfectly with a defined focal length.
A lens with Σ ą Σcr is called supercritical.
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Einstein radius

Considering now a circularly symmetric lens with arbitrary
mass profile. The lens equation leads to

βpθq “ θ ´
Dds

DdDs

4GMpθq

c2θ

If we now have a source lying exactly on the optic axis, it is
imaged as a ring if the lens is supercritical. By setting β “ 0 we
obtain the Einstein radius of the ring:

θE “

ˆ

4GMpθEq

c2
Dds

DdDs

˙
1
2

(3)
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Einstein ring
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Einstein ring

Considering a source not exactly on the symmetry line.
Rewriting the lens equation (2) for a point mass as

β “ θ ´
θ2

E
θ

. (4)

with the two solutions

θ˘ “
1
2

ˆ

β ˘

b

β2 ` 4θ2
E

˙

Ñevery source is imaged twice Ñone image on each side of the
source Ñone inside, one outside the Einstein ring
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Einstein ring

Figure : Visualization of multiple images (left) and Einstein rings
(right). Source: Wikipedia
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Magnification

Magnification

• Gravitational light deflection preserves surface brightness
• but Gravitational Lensing can change the flux by changing

the apparent solid angle of a source of a source as

magnification “
imagesize

sourcearea

or in formula
µ “

θ

β

dθ

dβ
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Magnification

Figure : Magnified image of a
source lensed by a point mass.

We can calculate the magnification
by using (4) and its values for µ˘

(only for pointmasses):

µ˘ “

«

1 ´

ˆ

θE
θ˘

˙4
ff´1

“
u2 ` 2

2u
?

u2 ` 4
˘

1
2

where u is the angular seperation
of source and point mass in units
of the Einstein angle: u “ βθ´1.
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Magnification

Usually these two circles images are not resolvable, because the
typical order of magnitude of the Einstein radius is:

θE “ p0.9”q

ˆ

M
1011M@

˙
1
2

ˆ

D
Gpc

˙´ 1
2

So we define the total magnification:

µ :“ |µ`| ` |µ´| “
u2 ` 2

u
?

u2 ` 4
u“1
“ 1.17 ` 0.17 “ 1.34

This fluctuation can be observed if lens and source move
relatively to each other.
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Thank you for your attention
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