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repetition

• Friedmann-Lemaı̂tre cosmologies with matter and dark energy for
accelerated expansion

• thermal history of the universe explains element synthesis and the
microwave background

• inflation needed for solving the flatness and horizon-problems, and
provides Gaussian initial fluctuations for structure growth

• formation of the cosmic large-scale structure from inflationary
perturbations by gravitational instability

• link between statistics and dynamics: linear structure formation is
homogeneous (growth equation D+(a)) and conserves Gaussianity
of the initial conditions

• halo formation: Jeans-criterion for baryons

• halo density and merging activity determined by Press-Schechter
formalism
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gravitational lensing: overview
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ABSTRACT
These lectures give an introduction to Gravitational Lensing. We discuss lensing by point masses, lensing by

galaxies, and lensing by clusters and larger-scale structures in the Universe. The relevant theory is developed and
applications to astrophysical problems are discussed.
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1. INTRODUCTION

One of the consequences of Einstein’s General Theory of Rel-
ativity is that light rays are deflected by gravity. Although this
discoverywasmade only in this century, the possibility that there
could be such a deflection had been suspected much earlier, by
Newton and Laplace among others. Soldner (1804) calculated
the magnitude of the deflection due to the Sun, assuming that
light consists of material particles and using Newtonian grav-
ity. Later, Einstein (1911) employed the equivalence principle to
calculate the deflection angle and re-derived Soldner’s formula.
Later yet, Einstein (1915) applied the full field equations of Gen-
eral Relativity and discovered that the deflection angle is actu-
ally twice his previous result, the factor of two arising because
of the curvature of the metric. According to this formula, a light
ray which tangentially grazes the surface of the Sun is deflected
by 1 7. Einstein’s final result was confirmed in 1919 when the
apparent angular shift of stars close to the limb of the Sun (see
Fig. 1)wasmeasured during a total solar eclipse (Dyson, Edding-
ton, & Davidson 1920). The quantitative agreement between the
measured shift and Einstein’s prediction was immediately per-
ceived as compelling evidence in support of the theory of Gen-
eral Relativity. The deflection of light bymassive bodies, and the

phenomena resulting therefrom, are now referred to as Gravita-
tional Lensing.

FIG. 1.—Angular deflection of a ray of light passing close to the limb
of the Sun. Since the light ray is bent toward the Sun, the apparent po-
sitions of stars move away from the Sun.

Eddington (1920) noted that under certain conditions there
may be multiple light paths connecting a source and an observer.
This implies that gravitational lensing can give rise to multiple
images of a single source. Chwolson (1924) considered the cre-
ation of fictitious double stars by gravitational lensing of stars by
stars, but did not comment onwhether the phenomenoncould ac-
tually be observed. Einstein (1936) discussed the same problem
and concluded that there is little chance of observing lensing phe-
nomena caused by stellar-mass lenses. His reason was that the
angular image splitting caused by a stellar-mass lens is too small
to be resolved by an optical telescope.
Zwicky (1937a) elevated gravitational lensing froma curiosity

to a field with great potential when he pointed out that galaxies
can split images of background sources by a large enough angle
to be observed. At that time, galaxies were commonly believed
to have masses of 109M . However, Zwicky had applied the
virial theorem to the Virgo andComa clusters of galaxies and had
derived galaxymasses of 4 1011M . Zwicky argued that the
deflection of light by galaxies would not only furnish an addi-
tional test of General Relativity, but would also magnify distant
galaxies which would otherwise remain undetected, and would
allow accurate determination of galaxy masses. Zwicky (1937b)
even calculated the probability of lensing by galaxies and con-
cluded that it is on the order of one per cent for a source at rea-
sonably large redshift.
Virtually all of Zwicky’s predictions have come true. Lens-

ing by galaxies is a major sub-discipline of gravitational lens-
ing today. The most accurate mass determinations of the cen-
tral regions of galaxies are due to gravitational lensing, and the
cosmic telescope effect of gravitational lenses has enabled us to

1

• gravitational light deflection: test of general relativity (1919)

• strong lensing: giant luminous arcs in clusters of galaxies

• weak lensing: correlated distortion of background galaxy images

• multiply imaged quasars and time delays

• lensed light curves of bulge stars and search of MACHOs

• lensing of the microwave background (2007)

• lensing of the microwave background polarisation (2013/2014)
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lensing on a point mass

• gravitational fields Φ influence the propagation of light: Shapiro
delay

∆t =

∫
dx

2
c3 Φ (1)

light travels slower in a gravitational potential

• we can assign an index of refraction to a potential

n = 1 − 2
c2 Φ (2)

so that the effective speed is c/n = c − 2Φ/c

• we expect lensing effects on gravitational fields due to Fermat’s
principle

α̂ = −
∫

dx ∇⊥n =
2
c2

∫
dx ∇⊥Φ (3)
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lensing on a point mass

• example: gravitational field of a point mass M at distance b, z

Φ(b, z) = − GM√
b2 + z2

(4)

• gradient of the potential

∇⊥ =
GM

(b2 + z2)3/2 b (5)

where b points towards the mass and is perpendicular to the ray

• deflection angle:

α̂ =
2
c2

∫
dz ∇⊥Φ =

4GM
c2b

(6)
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weak perturbations of the metric

• consider Minkowski-line element, weakly perturbed by static
gravitational potential Φ

(ds)2 =

(
1 +

2
c2 Φ

)
c2dt2 −

(
1 − 2

c2 Φ

)
d~x2 (7)

• on a geodesic, the line element vanishes: derive effective index of
refraction n

d|~x|
dt

= c′ =
c
n

with n = 1 − 2
c2 Φ (8)

• Fermat’s principle: photon minimises run time
∫ ∣∣∣d~x∣∣∣ n

δ

∫ xf

xi

ds

√
d~x2

ds2 n(~x(s)) = 0, (9)

for parametrisation x(s) of trajectory with
∣∣∣d~x/ds

∣∣∣ = 1
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lens equation

ξ
η

θβ

α

sourcelensobserver

• carry out the variation yields (∇⊥ = ∇ − ~e(~e∇)):

∇n − ~e(~e∇n) − n
d~e
ds

= 0→ d~e
ds

= ∇⊥ ln n ' − 2
c2∇⊥Φ (10)

• deflection α̂ = ~ef − ~ei = − 2
c2

∫
ds∇⊥Φ

• read off lens equation, use deflection angle α̂:

~η =
Ds

Dl

~ξ − Dlsα̂→ β = θ − Dls

Ds
α̂(θ) = θ − ~α (11)
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approximations

• formally: α̂ = ~ef − ~ei = − 2
c2

∫
ds∇⊥Φ

• nonlinear integral: the deflection determines the path on which one
needs to carry out the integration

• Born-approximation: integration along a fiducial straight ray
instead of actual photon geodesic

• if the travel path (of order c/H0)) is large compared to the size of the
lens, then the gravitational interaction can be taken to be
instantaneous→ thin-lens approximation

• in this case: project the surface mass density Σ

Σ(~b) =

∫
dz ρ(~b, z) (12)

• deflection is the superposition of all surface density elements

α̂(~b) =
4G
c2

∫
d2b′ Σ(~b′)

~b − ~b′
|~b − ~b′|2

(13)
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Einstein radius of a gravitational lens

• Einstein ring: look at deflection

β = θ − α = θ − Dds

DdDs

4GM
c2θ

(14)

• if the source lies on the optical axis (β = 0) and if the lens is massive
enough al light rays are focused

• we can compute the radius of the ring (in angular units)

θE =

√
4GM

c2

Dds

DdDs
(15)

which is called the Einstein-radius

cosmology and gravitational lensingMarkus Pössel + Björn Malte Schäfer
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strong lensing and Einstein-rings

Einstein ring around an elliptical galaxy, source: SLACS survey

• perfect alignment of source and lens give rise to Einstein rings
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lens mapping and the mapping Jacobian

• lens equation β = θ − ~α(θ) relates true position θ to observed
position β with mapping field α

• if mapping α = ∇⊥ψ is not constant across galaxy image→
distorsion of observed shape

• describe with Jacobian-matrix J

J =
∂β

∂θ
=

(
δij − ∂

2ψ(θ)
∂θi∂θj

)
(16)

• decompose A = id − J in terms of Pauli-matrices:

A =
∑
α

aασα = κ

(
1 0
0 1

)
+ γ+

(
1 0
0 −1

)
+ γ×

(
0 1
1 0

)
(17)

• coefficients: κ (convergence), γ+ and γ× (shear)

• combine shear coefficients to complex shear γ = γ+ + iγ× (spin 2)

cosmology and gravitational lensingMarkus Pössel + Björn Malte Schäfer
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image distortions

ϕ = const ϕ ∝ θ ϕ ∝ θ2 ϕ ∝ θ3

• deflection not observable, actual position of a galaxy is unknown

• with assumptions on galaxy ellipticity, the shearing is observable

• bending of an image (flexion) is a new lensing method

question
why is there no rotation of a galaxy image in lensing?
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analytical profiles: singular isothermal sphere

• from the part about the stability of self-gravitating systems we know
the singular isothermal sphere:

ρ(r) =
σ2
υ

2πG
× 1

r2 (18)

where the unordered particle motion is described by the velocity
disperson σ2

υ

• compute surface mass density by projection

Σ(x) =
σ2
υ

2G
× 1

x
(19)

• from which we get the deflection angle

α̂ = 4π
σ2
υ

c2 (20)
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mass reconstructions

• convergence ∝ local surface mass density Σ of a lens

• but: it is not directly observable→ is it possible to infer κ and the
mass map from the observation of gravitational shear?

• write down derivative relations in Fourier space

κ = −1
2

(k2
x + k2

y )ψ γ+ = −1
2

(k2
x − k2

y )ψ γ× = −kxkyψ (21)

• combine into single equation(
γ+

γ×

)
=

1
k2

(
k2

x − x2
y

2kxky

)
κ (22)

• operator is orthogonal: A2 = id[
1
k2

(
k2

x − k2
y

2kxky

)]2

= 1 (23)
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example: cluster profiles

numerical cluster reconstructions, source: J. Merten

• inversion κ = 1
k2

[
(k2

x − k2
y )γ+ + 2kxkyγ×

]
yields estimate of map Σ

question
derive the reconstruction operator in real space and formulate the
inversion as an integration, identify the Green-function
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weak cosmic shear

source: S. Colombi

• lensing on the large-scale structure: fluctuation statistics of the
lensing signal reflects the fluctuation statistics of the density field

• neighboring galaxies have correlated deformations because the
light rays cross similar, correlated tidal fields
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tidal fields and their effect on light rays

• distance x of a gravitationally deflected light ray relative to a fiducial
straight line is

d2x
dχ2 = − 2

c2∇⊥Φ (24)

• solution (flat universes)

x = χθ − 2
c2

∫
dχ′ (χ − χ′)∇⊥Φ(χ′θ) (25)

• deflection angle

α =
χθ − x
χ

=
2
c2

∫
dχ′

χ − χ′
χ
∇⊥Φ(χ′θ) (26)

• convergence, with ∇θ = χ∇x

κ =
1
2

divα =
1
c2

∫
dχ′ (χ − χ′)χ

′

χ
∆Φ(χ′θ) (27)
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repetition light deflection analytical profiles reconstructions cosmic shear applications summary

tidal fields and their effect on light rays

• relate to density field with (comoving) Poisson-equation

∆Φ =
3H2

0Ωm

2a
δ (28)

• final result:

κ =

∫
dχ′ W(χ, χ′)δ with W(χ, χ′) =

3
2

(H0

c

)2 Ωm

a
(χ − χ′)χ

′

χ
(29)

• fluctuations in κ reflect fluctuations in δ in a linear way

cosmic shear
gravitational shear of a galaxy measures the integrated matter
density along the line of sight, weighted by W(χ)
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ray-tracing simulations of weak lensing

source plane

DD
S

DD
N

DD
1

DD
1N

DD
NS

α

observer

N planes

N
α

η

1

ξ
N

1
ξ

source: C. Pfrommer

• solve transport d2

dw2 x = − 2
c2∇⊥Φ by discretisation
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simulated shear field on an n-body simulation
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shear γ+ shear γ×

• Gadget-simulated, side length 100 Mpc/h, 40 planes

• clusters of galaxies produce characteristic pattern in shear field
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Limber-equation

• original title: Limber (1953), The Analysis of Counts of the
Extragalactic Nebulae in Terms of a Fluctuating Density Field

• relate 3d-power spectrum P(k) to observed 2d-power spectrum C(`)

• define correlation function C(θ) = 〈g(θ1)g(θ2)〉 of quantity g, which
measures fluctuations in density field g(θ) =

∫
dχW(χ)δ(χθ, χ)

• assume that weighting function q(χ) does not vary much compared
to fluctuation scale:

C(θ) =

∫
dχ W(χ)2

∫
d(∆χ) ξ

(√
(χθ)2 + ∆2χ, χ

)
(30)

• correlation function C(θ) can be Fourier-transformed to yield angular
power spectrum C(`):

C(`) =

∫
dχ

W(χ)2

χ2 P
(
k =

`

χ
, χ

)
(31)
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angular spectra

• the spectrum P(k) is defined as

〈δ(k)δ(k′)〉 = (2π)3δD(k + k′)P(k) (32)

from the Fourier-transform of the density field δ(x)

δ(k) =

∫
d3x δ(x) exp(−ikx) ↔ δ(x) =

∫
d3k

(2π)3 δ(k) exp(+ikx)

(33)

• if the field is not defined in Cartesian coordinates but exists on the
surface of the sphere (like an observation at a position on the sky),
one needs to use spherical harmonics for decomposition:

γ(θ̂) =

∞∑
`=0

+∑̀
m=−`

γ`mY`m(θ̂) ↔ γ`m =

∫
4π

dΩ γ(θ̂)Y∗`m(θ̂) (34)

and the spectrum reads:

〈γ`mγ∗`′m′〉 = δ``′δmm′ C(`) (35)
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Limber-equation: correlation functions

• observable: shear γ at position θ̂ on the sky:

γ(θ̂) =

∫ χH

0
dχ Wγ(χ)δ(χθ̂, χ) (36)

• write down correlation function as the Fourier-transfrom of P(k) and
project:

Cγγ(α) =

∫ χH

0
dχWγ(χ)

∫ χH

0
dχ′Wγ(χ′)

∫
dkk2P(k, χ, χ′)

∫
4π

dΩk exp(ik(x−x′))

(37)

• correlation function as the Fourier-transform of the spectrum

〈γ(θ̂χ, χ)γ∗(θ̂′χ′, χ′)〉 =

∫
d3k

(2π)3 P(k) exp(ik(x − x′)) (38)

• with the integration done in spherical coordinates

〈γ(θ̂χ, χ)γ∗(θ̂′χ′, χ′)〉 =

∫
dk k2P(k)

∫
4π

dΩk exp(ik(x − x′)) (39)
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Limber-equation: Rayleigh-decomposition

• Rayleigh: decomposition of plane waves in spherical waves

exp(ikx) = 4π
∞∑
`=0

i`j`(kx)
+∑̀

m=−`
Y`m(k̂)Y∗`m(θ̂) (40)

• rewrite Fourier-waves as spherical waves:∫
4π

dΩk exp(ik(x − x′)) = (4π)2
∞∑
`=0

j`(kχ)j`(kχ′)
+∑̀

m=−`
Y`m(θ̂)Y∗`m(θ̂′)

(41)

• use addition theorem of spherical harmonics∫
4π

dΩk exp(ik(x − x′)) = 4π
∞∑
`=0

j`(kχ)j`(kχ′) (2` + 1) P`(cosα) (42)

• write correlation function Cγγ(α) from P(k)

Cγγ(α) = 4π
∫ χH

0
dχWγ(χ)

∫ χH

0
dχ′Wγ(χ′)

∫
dkk2P(k, χ, χ′)

∞∑
`=0

j`(kχ)j`(kχ′)(2`+1)P`(cosα)

(43)
cosmology and gravitational lensingMarkus Pössel + Björn Malte Schäfer
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Limber-equation: angular spectra

• transform correlation function to `-space by Fourier-transform

Cγγ(`) = (4π)2
∫ χH

0
dχWγ(χ)

∫ χH

0
dχ′Wγ(χ′)

∫
dkk2P(k, χ, χ′)j`(kχ)j`(kχ′)

(44)

• use orthonormality of spherical Bessel functions∫ ∞

0
k2dk j`(kχ)j`(kχ′) =

π

2χ2 δD(χ − χ′) (45)

• Bessel-functions sort out P(k) ' P(`/χ), such that:

Cγγ(`) '
∫ χH

0

dχ
χ2 W2

γ (χ)P(k = `/χ, χ) (46)

Limber-equation
relates fluctuation statistics of the 3d-source field to the statistics of
the 2d projected observable
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Limber-equation: additional formulas

• angular spectrum from the correlation function

Cγγ(`) = 2π
∫

d cosα Cγγ(α)P`(cosα) (47)

• correlation function from the angular spectrum

Cγγ(α) =
1

4π

∞∑
`=0

(2` + 1)Cγγ(`)P`(cosα) (48)

• addition theorem of the spherical harmonics

+∑̀
m=−`

Y`m(θ̂)Y∗`m(θ̂′) =
2` + 1

4π
P`(cosα) (49)
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shear power spectra

source: Bartelmann & Schneider, physics reports 340 (2001)

• use Limber’s equation to link the shear power spectrum to the dark
matter power spectrum

• cosmology: redshift weightings W(χ), growth D+(a(χ)),
normalisation reflects σ8

cosmology and gravitational lensingMarkus Pössel + Björn Malte Schäfer
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shear in apertures

source: Bartelmann & Schneider, physics reports 340 (2001)

• improve constraint on σ8: C(`) should be determined by a small
range of k-modes

• average γ in an aperture of size θ: 〈|γ|2〉(θ): product in `-space

〈|γ|2〉(θ) = 2π
∫ ∞

0
`d` Cγ(`)

[
J1(θ`)
πθ`

]2

(50)
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parameter estimates from weak cosmic shear
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joint constraint on ΩEDE and w0, source: L. Hollenstein

• lensing is a powerful method for determining parameters

• even complicated dark energy models can be investigated
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future lensing surveys

EUCLID LSST

• coverage ∼ half of the sky, going to unit redshift

• precision determination of cosmological parameters, statistical
errors ∼ 10−3...−4

• challenge: systematics control
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weak lensing tomography
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repetition light deflection analytical profiles reconstructions cosmic shear applications summary

measurements of galaxy shapes

• observe distorsion in the shape of lensed galaxies

• measure second moments of brightness distribution

Qij =

∫
d2θI(θ)(θi − θ̄i)(θj − θ̄j)∫

d2θI(θ)
(51)

• define complex ellipticity (spin 2):

ε =
Qxx − Qyy + 2iQxy

Qxx + Qyy + 2
√

QxxQyy − Q2
xy

(52)

• mapping of complex ellipticity by a Jacobian with reduced shear
g(θ) = γ(θ)/[1 − κ(θ)]:

ε =
ε′ + g

1 + g∗ε′
for |g| ≤ 1, ε =

1 + (ε′)∗g
(ε′)∗ − g′

for |g| > 1 (53)

cosmology and gravitational lensingMarkus Pössel + Björn Malte Schäfer
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galaxy shapes with shapelets

00
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11
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20
B
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B

22
B

shapelet base functions Bij, source: P. Melchior

• decomposition into a set of basis functions based on the quantum
mechanical harmonic oscillator: Hermite polynomials
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lensing of the cosmic microwave background

sky-map of the deflection angle, source: C. Carbone

• weird (non-Gaussian) patterns in the deflection field

• measurement of lensing at high redshift, in temperature and
polarisation
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parameter estimates from CMB lensing
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lensed and unlensed CMB spectra, source: Ph. Merkel

• lensing wipes out structures in the CMB (compare to frosted glass)

• amplitudes of the CMB spectrum decreases, non-Gaussianitites in
the CMB are generated

• polarisation correlations more strongly affected, B-modes
cosmology and gravitational lensingMarkus Pössel + Björn Malte Schäfer
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microlensing and MACHOs

source: C. Alcock

• compact massive objects (historical dark matter candidates) orbit
the Milky Way

• observe a large number of bulge stars or stars in the LMC

• find lensed light curves, very typical signature
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time delay measurements with quasars

source: universe review

• image appears if the variation of the gravitational time delay is zero

• time delays between different images differ by days

• geometry of the lens can be determined, including the distance

cosmology and gravitational lensingMarkus Pössel + Björn Malte Schäfer
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time delay function

• the deflection can be written as the gradient of the lensing potential

θ − β = ∇ψ (54)

• which can be combined into a single condition

∇
(

1
2

(θ − β)2 − ψ
)

= 0 (55)

• compare with time-delay function

∆t(θ) =
1 + z

c
DdDs

Dds

(
1
2

(θ − β)2 − ψ
)

= ∆tgeo + ∆tgrav (56)

• the first term corresponds to the time delay along the lensed
trajectory, the second term is the Shapiro delay in a gravitational
potential

• Fermat’s principle now requires ∇∆t(θ) = 0, which might have
multiple solutions
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summary: Friedmann-Lemaı̂tre cosmologies

• dynamic world models based on general relativity

• Robertson-Walker line element as a solution to the field equation

• Copernican principle: homogeneous and isotropic metric

• homogeneous fluids, with a certain pressure density relation,
parameterised by w = p/ρ
• radiation (w = +1/3)
• (dark) matter (w = 0)
• curvature (w = −1/3)
• cosmological constant (w = −1)

• Hubble parameter H0 defines the critical density ρcrit = 3H2
0/(8πG)

• distance definitions become ambiguous

• geometrical probes constrain the model parameters to a few
percent, in particular Ωk < 0.01
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summary: random fields and spectra

• inflation: epoch of rapid accelerated expansion of the early
universe

• Hubble expansion dominated by a fluid with very negative w
• drives curvature towards zero→ flatness problem
• grows observable universe from a small volume→ horizon problem

• fluctuations in the energy density of the inflaton field couple
gravitationally to the other fluids

• fluctuations are Gaussian and have a finite correlation length
• characterisation with a correlation function ξ(r)
• homogeneous fluctuations: spectrum P(k)

• inflationary fluctuations can be observed as temperature
anisotropies in the CMB

• shape of the spectrum: inflation gives P(k) ∝ kns , changed by
transfer function T(k) in the Meszaros effect, normalised by σ8
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summary: structure formation

• cosmic structures and the large-scale distribution of galaxies form
by gravitational instability of inflationary perturbation
• continuity equation
• Euler equation
• Poisson equation

• linearisation for small amplitudes: homogeneous growth, described
by D+(a), conservation of Gaussianity of initial conditions

• nonlinear growth is inhomogeneous and destroys Gaussianity by
mode coupling

• three basic difficulties
• nonlinearities in the continuity and Euler-equation
• collisionlessness of dark matter
• non-extensivity of gravity

• galaxy formation: gravitational collapse, Jeans argument

• halo density: predicted from P(k) with Press-Schechter formalism
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summary: standard model ΛCDM

• ΛCDM is a flat, accelerating Friedmann-Lemaı̂tre cosmology with
dark matter and a cosmological constant

• ΛCDM has 7 parameters, and is in remarkable agreement with
observations, both of geometrical and growth probes

1 Ωm = 0.25, low density, required by supernova observations
2 Ωb = 0.04, small value, good measurement from CMB
3 ΩΛ = 0.75, flatness from CMB, Ωm + ΩΛ = 1
4 w = −1, cosmological constant, no dynamic dark energy
5 σ8 = 0.8, low value (compared to history), largest uncertainty
6 ns = 0.96, predicted by inflation to be . 1
7 h = 0.72, sets expansion time scale, or age/size of the universe

• up to now, there is no theoretical understanding of Λ or of the
magnitude of H0
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summary: open questions in cosmology

• precision determination of cosmological parameters and verification
of the standard model

• matter content of the Universe: dark matter particles, cosmological
neutrinos

• inflation, conditions for inflation and observables, Gaussianity

• gravitational waves in the early universe

• quantification of the nonlinearly evolved cosmic density field,
description of nonlinear structure formation processes

• substructure of dark matter haloes and an explanation of their
kinematic structure

• biasing of galaxies and relations between host halo properties and
member galaxies, galaxy formation and evolution

• distinguishing between cosmological constant Λ, dark energy or
modified gravity

• tidal interactions of haloes with the large-scale structurecosmology and gravitational lensingMarkus Pössel + Björn Malte Schäfer
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