thermal history of the universe and big bang nucleosynthesis

cosmology lecture (chapter 8)

Markus Pössel + Björn Malte Schäfer

Haus der Astronomie and Centre for Astronomy Fakultät für Physik und Astronomie, Universität Heideberg

August 1, 2013

2 thermal history of the universe

adiabaticity thermodynamical distributions freeze-out

3 synthesis

stars spallation explosive big-bang

- Friedmann-Lemaître cosmological models:
 - homogeneous and isotropic metric (Robertson-Walker line element)
 - homogeneous and ideal fluids, described by ρ and w
- evolving metric, described by Hubble function *H*(*a*)
 → distance measures, interesting features
- geometrical measurements (SN distances) constrain densities
- cosmological fluids, influence *H*(*a*) by their eos parameter *w*
- preferred model: ACDM, flat and accelerating
 - radiation $\Omega_{\nu} \simeq 10^{-4}$
 - matter $\Omega_m = 0.25$
 - curvature $\Omega_k \simeq 0$
 - cosmological constant Ω_Λ = 0.75

thermal history of the universe

- · temperature of fluids drop while universe expands
- 3 important stages
 - temperature is high enough to allow nuclear reactions \rightarrow big bang nucleosynthesis ($z \simeq 10^{10}$)
 - densities of radiation and matter are equal \rightarrow matter-radiation equality ($z \simeq 10^4$)
 - temperature is high enough to ionise hydrogen
 → cosmic microwave background (z ≃ 10³)

question

would the universe heat up again if contracting?

question

can you derive the redshift (or scale factor) for $\Omega_m(z) = \Omega_{\gamma}(z)$?

Markus Pössel + Björn Malte Schäfer

summary

thermal history of the universe: overview

source: Addison-Wesley

Markus Pössel + Björn Malte Schäfer

synthesis

thermal history of the universe: particle interactions

source: particle data group

Markus Pössel + Björn Malte Schäfer

adiabaticity

- 3 basic assumptions
 - adiabatic expansion, no heat flux into the universe
 - thermal equilibration possible despite Hubble expansion
 - fluids are ideal, no long-range interactions between particles
- entropy
 - dQ = 0 does not say anything about entropy generation
 - · both reversible and irreversible processes are possible
 - dominating contribution to the entropy are the CMB photons
 - irreversible processes happen (formation of objects and relaxation towards final state!), but their entropy contribution is negligible
 - in this sense d*Q* = 0 implies d*S* = 0, and entropy is conserved in adiabatic expansion

thermodynamical distributions

- · spin-statistics theorem: in equilibrium,
 - integer spin particles are Bose-Einstein distributed
 - half-integer spin particles are Fermi-Dirac distributed
- in cosmology, we consider
 - photons (spin 1)
 - neutrinos (spin 1/2)
 - dark matter particles and baryons (scalar, spin 0)
- Bose-Einstein distribution

$$n(p,T) = \frac{g}{(2\pi\hbar)^3} \int_0^\infty dp \frac{4\pi p^2}{\exp(\epsilon(p)/k_B T) - 1}$$
(1)

Fermi-Dirac distribution

$$n(p,T) = \frac{g}{(2\pi\hbar)^3} \int_0^\infty \mathrm{d}p \frac{4\pi p^2}{\exp(\epsilon(p)/k_B T) + 1}$$
(2)

• with the energy-momentum relation $\epsilon(p)$

Markus Pössel + Björn Malte Schäfer

properties of quantum gases

- properties of ensembles can be derived by computing the partition sum using the fundamental distribution
- · thermodynamic potentials follow by logarithmic differentiation
- for **bosons** (integer spin)

$$n_B = \frac{g_B \zeta(3)}{\pi^2} \left(\frac{k_B T}{\hbar c}\right)^3, u_B = \frac{g_B \pi^2}{30} \frac{(k_B T)^4}{(\hbar c)^3}, s_B = \frac{g_B 2 \pi^2}{45} \left(\frac{k_B T}{\hbar c}\right)^3$$
(3)

• for fermions (half-integer spin)

$$n_F = \frac{3}{4} \frac{g_F}{g_B} n_B, u_F = \frac{7}{8} \frac{g_F}{g_B} u_B, s_F = \frac{7}{8} \frac{g_F}{g_B} s_B$$
(4)

question

what is the density of CMB photons, temperature $T_{\text{CMB}} = 2.726$ K?

Markus Pössel + Björn Malte Schäfer

temperature and Hubble expansion

- Hubble expansion is an **adiabatic** process dQ = 0
- adiabatic equation: $V^{\kappa-1}T = \text{const}$ with adiabatic index $\kappa \equiv c_p/c_V$
- early times: universe is filled with photons $\kappa = 4/3$ (relativistic gas)

$$T \propto V^{-1/3} \propto a^{-1} \tag{5}$$

• late times: universe is filled with (dark) matter $\kappa = 5/3$ (classical gas)

$$T \propto V^{-2/3} \propto a^{-2} \tag{6}$$

question

how would the temperature vary if the universe was filled with molecular gas?

question

if the universe was filled with an ideal gas, how would pressure depend on scale factor? Markus Pössel + Biörn Malte Schäfer thermal history of the universe and big bang nucleosynthesis

temperature and Hubble expansion

question

in the real Universe, there are many more photons than baryons, such that the baryon temperature follows the photon temperature until a redshift of $z \approx 100$. What is the temperature of the baryons today, and what would this number be if you would just let them cool with the adiabatic law?

(chemical) reactions and Hubble expansion

- thermal equilibrium: maintained by particle collisions
- comparison of 2 time-scales: collision t_{coll} and expansion t_{Hubble}
 - $t_{coll} < t_{Hubble}$: relaxation, thermal equilibrium can be maintained
 - t_{Hubble} < t_{coll}: system drops out of equilibrium
- Hubble expansion time-scale is given by (radiation domination)

$$t_{\text{Hubble}} = H^{-1}(a) = a/\dot{a} \simeq (G\rho)^{-1/2} \propto a^2$$
 (7)

collision rate:

$$\Gamma = n \langle \sigma \upsilon \rangle \to t_{\rm coll} = \Gamma^{-1} \propto a^3 \tag{8}$$

- early times: $t_{\text{Hubble}}/t_{\text{coll}} \propto a^{-1}$, thermal equilibrium easily maintained
- late times: equilibrium can break down

Markus Pössel + Björn Malte Schäfer

- - continuity equation : $\dot{n} + \operatorname{div}(n\vec{v}) = 0$ •
 - with isotropic Hubble flow $\vec{v} = H\vec{r}$ and $\operatorname{div}\vec{r} = 3$: $\dot{n} + 3Hn = 0$ ٠
 - modification: presence of collisions and particle creation:

$$\dot{n} + 3Hn = -\Gamma n + S = -\Gamma n \left(1 - \frac{n_T^2}{n^2} \right) \tag{9}$$

- collision rate $\Gamma = n \langle \sigma v \rangle$
- particle creation from thermal particles $S = \langle \sigma v \rangle n_T^2$
- introduce comoving number density $N = na^3$ ٠

$$\dot{N} = -\Gamma N \left(1 - \frac{N_T^2}{N^2} \right) \tag{10}$$

with $\dot{N} = a^3(3Hn + \dot{n})$

Markus Pössel + Björn Malte Schäfer

• comoving continuity equation for particle density

$$\frac{\mathrm{d}\ln N}{\mathrm{d}\ln a} = -\frac{\Gamma}{H} \left(1 - \frac{N_T^2}{N^2} \right) \tag{11}$$

- comparison of the two time-scales $t_{coll} = \Gamma^{-1}$ and $t_{Hubbe} = H^{-1}$
- if thermalisation is complete, $N_T = N$, stays thermalised
- if $N_T \neq N$, thermalisation takes place if $\Gamma \ll H$
- but if $\Gamma \ll H$, the particles can not equilibrate \rightarrow freeze-out
- for relativistic particles, n ∝ a⁻³ and N = a³n = const
 → thermal distribution maintained even after freeze-out

question

what is the equilibrium ratio between protons and neutrons in the reaction $p + e^- \leftrightarrow n + v_e$ at 0.1 MeV? at 1 MeV? at 10 MeV?

Markus Pössel + Björn Malte Schäfer

cosmic neutrino background

- (electro)weak reactions $v + \bar{v} \leftrightarrow e^+ + e^- \leftrightarrow 2\gamma$ thermalise vs
 - freeze out temperature of neutrinos $T_{\nu} \simeq 10^{10.5} {\rm K}$
 - freeze out temperature of photons $T_{\gamma} \simeq 10^{10} {\rm K}$
- e⁺/e⁻-annihilation dumps energy into photons, but not neutrinos
- entropy is conserved in freeze-out: $s'_{e^+} + s'_{e^-} + s'_{\gamma} = s_{\gamma}$
- entropy of species differs only by fermionic factor 7/8: $s'_{e^{\pm}} = 7/8s'_{\gamma}$
- entropy $\propto T^3$, therefore we get for the temperature after annihilation:

$$\left(2\frac{7}{8}+1\right)(T')^3 = T^3 \to T \simeq 1.4T'$$
 (12)

γ-temperature is 40% higher compared to ν-temperature

question

what's the temperature of the ν -background at z = 0? at z = 1?

Markus Pössel + Björn Malte Schäfer

synthesis

baryon-photon ratio

- measurements (CMB spectrum *X*-ray observation of clusters) suggest that the baryon density is low, $\Omega_b = 0.04$
- if all baryons are hydrogen atoms, the number density of baryons is

$$n_b = \frac{\rho_b}{m_p} = \frac{\Omega_b}{m_p} \frac{3H_0^2}{8\pi G} \simeq 1.1 \times 10^{-5} \Omega_b h^2 \text{cm}^{-3}$$
(13)

• define baryon to photon ratio η

$$\eta \equiv \frac{n_b}{n_{\gamma}} = 2.7 \times 10^{-8} \Omega_b h^2 \simeq 10^{-9}$$
(14)

• there are more than 10^9 photons per baryon \rightarrow dominate entropy

question

show that n_b and n_γ scale identically with temperature *T*! use a physical argument or properties of the Planck spectrum.

Markus Pössel + Björn Malte Schäfer

synthesis of elements: overview

- at redshift $z = 10^{10}$, the equilibrium temperature is $k_BT = 1$ MeV, and the universe is filled with a plasma of photons, neutrinos, protons and neutrons
- thermonuclear reactions can produce light elements
 → big bang nucleosynthesis
- 4 relevant processes for element production
 - stellar nucleosynthesis (thermonuclear burning in stars)
 - spallation (collisions of nuclei in the ISM)
 - explosive nucleosynthesis (heavy element production in supernovae)
 - big bang nucleosynthesis (element production in the early universe)

question

what sets the ranges in which each process is effective?

Markus Pössel + Björn Malte Schäfer

(synthesis)

synthesis of elements: overview

Markus Pössel + Björn Malte Schäfer

(synthesis)

summary

synthesis of elements: isotopes

Markus Pössel + Björn Malte Schäfer

synthesis of elements 1: stellar nucleosynthesis

- stellar nucleosynthesis: thermal reactions at 10⁷K
- fusion up to iron/nickel, heavier elements can not be produced exothermally

synthesis of elements 2: spallation

- big bang nucleosynthesis produces
 - up to lithium (Z = 3), no stable isotopes
 - stars from carbon on (Z = 6), triple α fusion
- what about the bulk of lithium, beryllium (Z = 4) and boron (Z = 5)
- production by **spallation** in the interstellar medium
- collision between nuclei induces fission
- fragments are light nuclei with low Z

synthesis of elements 3: explosive nucleosynthesis

source: wikipedia, Chandra X-ray image

- element production in supernovae
- heavier elements than iron/nickel can be generated

Markus Pössel + Björn Malte Schäfer

synthesis of elements 4: big bang nucleosynthesis

• at a temperature of $k_BT \simeq 1 \text{GeV}$, protons and neutrons transform by β -processes

$$p + e^- \leftrightarrow n + \nu_e \tag{15}$$

- thermal equilibrium is maintained until β -interaction freezes out at $k_BT \simeq 1 \text{MeV}$
- nucleosynthesis can take place, by the reactions

$$n+p \rightarrow {}^{2}H+\gamma$$
 (16)

$${}^{2}H + {}^{2}H \rightarrow {}^{3}He + n \tag{17}$$

$${}^{3}He + {}^{2}H \rightarrow {}^{4}He + p \tag{18}$$

$${}^{4}He + {}^{3}H \rightarrow {}^{7}Li + \gamma \tag{19}$$

(20)

• absence of stable isotopes with weights *A* = 5 and *A* = 8 make production of heavier elements impossible

Markus Pössel + Björn Malte Schäfer

nucleosynthesis networks

source: Maldonaldo + Timmes

Markus Pössel + Björn Malte Schäfer

synthesis

big bang nucleosynthesis

- deuterium production $n + p \rightarrow {}^{2}H + \gamma$ would take place at $k_{B}T \simeq 2 \text{MeV}$
- high photon density destroys deuterium by photodissociation until $k_BT \simeq 100 \text{keV}$
- deuterum production sets in effectively 3 minutes after the big bang/inflation
- Gamov-criterion: deuterium abundance is crucial
 - too much ²*H*: neutrons are locked up, no heavier elements can form
 - too little ²*H*: synthesis chain can not continue
- ideal deuterium production rate

$$n_b \langle \sigma \upsilon \rangle \,\Delta t \simeq 1 \tag{21}$$

with the time Δt for nucleosynthesis

Markus Pössel + Björn Malte Schäfer

big bang nucleosynthesis: abundance predictions

- neutron abundance:
 - neutrons and protons are in equilibrium until $k_B T = 1 \text{MeV}$
 - fusion for the production of deuterium sets in at $k_B T = 100 \text{keV}$
- in the meantime, neutrons decay with the half life of $\simeq 15$ minutes
- resulting neutron-proton ratio

$$\frac{n_n}{n_p} \simeq \frac{1}{7} \tag{22}$$

- helium abundance
 - deuterium absorbs neutrons into helium (high binding energy)
- resulting helium mass fraction

$$Y_p \simeq \frac{2n_n}{n_p + n_n} = \frac{1}{4}$$
 (23)

Markus Pössel + Björn Malte Schäfer

nucleosynthesis: summary

source: universe review

Markus Pössel + Björn Malte Schäfer

dependence of abundance on η

- if η increases (less photons):
 - nucleosynthesis starts earlier, more neutrons decay, more deuterium is produced $\rightarrow Y_p$ increases
 - ${}^{2}H$ adn ${}^{3}He$ are consumed by fusion \rightarrow abundances decrease
 - at low η , ⁷*Li* is destroyed by protons \rightarrow lithium-valley

(synthesis)

summary

nucleosynthesis: results 1

source: Maldonaldo + Timmes

(synthesis)

nucleosynthesis: results 2

Markus Pössel + Björn Malte Schäfer

observations

observations are difficult because light elements are produced and consumed in stars

- all isotopes are observed spectroscopically:
 - ²*H*: hyperfine transitions
 - ³*He*: hyperfine transitions
 - ⁴*He*: optical tranisions while recombinating in HII-regions
 - ⁷Li: optical transitions, in cool, low-mass stars
- best probe: ${}^{2}H$, because it depends on η in a simple way and is only destroyed in stellar fusion

$$\frac{n_{2H}}{n_H} \simeq 3.5 \times 10^5$$
 (24)

Markus Pössel + Björn Malte Schäfer

repetition	thermal history of the universe	syntnesis	observations	summary
summar	У			
	- Lifteriale consideration and a distance			

- ideal fluids undergo an adiabatic process in Hubble expansion and lower their temperature
- collision time-scale determines if a fluid can be thermal
- at high temperatures, the thermonuclear production of light elements from hydrogen is possible
- helium and lithium can be produced in big bang nucleosynthesis, but not heavier elements
- observation of primordial element abundances is possible, but very difficult
- relic radiation from the BBN era is the cosmic neutrino background, with a equilibrium temperature of 1.95K
- photons are the dominating contribution to the entropy, entropy generation is almost negligible