formation of the cosmic large-scale structure

Heraeus summer school on cosmology, Heidelberg 2013

Centre for Astronomy Fak<mark>ultät für Physik und Astronomie, Universität Heide</mark>lberg

August 23, 2013

2 structure formation

3 nonlinearity

4 correlation functions

5 summary

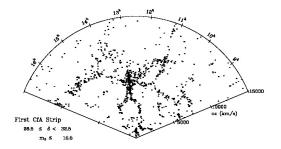
up to now

we always worked with homogeneously distributed matter (in the context of FLRW-cosmologies). but look at all the structure!

- mean density of the Universe: $\rho\simeq 10^{-29}{\rm g/cm^3}$
- density inside a cluster of galaxies: $\rho\simeq 10^{-27} {\rm g/cm^3}$
- density inside a galaxy: $\rho \simeq 10^{-29} \mathrm{g/cm^3}$
- density of the Earth: $\rho \simeq 5 \text{g/cm}^3$
- density of the Sun: $\rho\simeq 1.5 {\rm g/cm^3}$
- density of a white dwarf: $\rho \simeq 10^6 {\rm g/cm^3}$
- density of a Neutron star: $\rho\simeq 10^{14} {\rm g/cm^3}$

summary

filamentary structures: the stickman



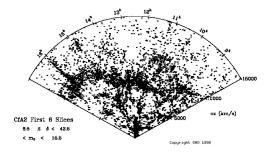
Copyright SAO 1998

distribution of galaxies (source: CFA, Harvard)

Björn Malte Schäfer

summary

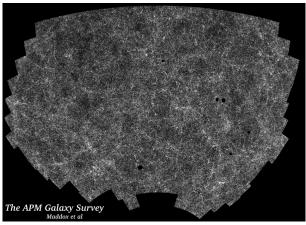
filamentary structures: the great wall



distribution of galaxies (source: CFA, Harvard)

Björn Malte Schäfer

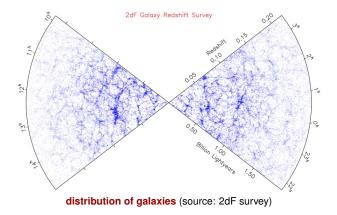
large-scale structure: APM survey



distribution of galaxies (source: APM survey)

Björn Malte Schäfer

large-scale structure: 2dF survey



Björn Malte Schäfer

properties of dark matter

current paradigm:

structures from by gravitational instability from inflationary fluctuations in the cold dark matter (CDM) distribution

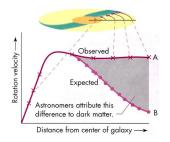
- collisionless \rightarrow very small interaction cross-section
- cold → negligible thermal motion at decoupling, no cut-off in the spectrum *P*(*k*) on a scale corresponding to the diffusion scale
- dark \rightarrow no interaction with photons, possible weak interaction
- matter \rightarrow gravitationally interacting

main conceptual difficulties

- collisionlessness → hydrodynamics, no pressure or viscosity
- non-saturating interaction (gravity) \rightarrow extensivity of binding energy

Björn Malte Schäfer

galaxy rotation curves



- balance centrifugal and gravitational force
- stars move too fast if only visible matter generates the potential
- there must be invisible matter in the galaxy

summary

virial equilibrium of clusters

source: NASA

- compare velocities and depth of gravitational potential
- galaxies move too fast if only visible matter would produce the potential
- there must be invisible matter around (or the virial theorem would be wrong, or the gravitational potential would be different)

dark matter and the microwave background

- fluctuations in the density field at the time of decoupling are $\simeq 10^{-5}$
- long-wavelength fluctuations grow proportionally to a
- if the CMB was generated at $a = 10^{-3}$, the fluctuations can only be 10^{-2} today
- large, supercluster-scale objects have $\delta \simeq 1$

cold dark matter

need for a **nonbaryonic** matter component, which is not interacting with photons

Björn Malte Schäfer

structure formation equations

cosmic structure formation

cosmic structures are generated from tiny inflationary seed fluctuations, as a fluid mechanical, self-gravitating phenomenon (with Newtonian gravity), on an expanding background

· continuity equation: no matter ist lost or generated

$$\frac{\partial}{\partial t}\rho + \operatorname{div}(\rho\vec{v}) = 0 \tag{1}$$

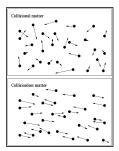
• Euler-equation: evolution of velocity field due to gravitational forces

$$\frac{\partial}{\partial t}\vec{v} + \vec{v}\nabla\vec{v} = -\nabla\Phi \tag{2}$$

Poisson-equation: potential is sourced by the density field

$$\Delta \Phi = 4\pi G \rho \tag{3}$$

collisionlessness of dark matter

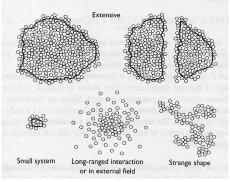


source: P.M. Ricker

- · why can galaxies rotate and how is vorticity generated?
- why do galaxies form from their initial conditions without viscosity?
- how can one stabilise galaxies against gravity without pressure?
- is it possible to define a temperature of a dark matter system?

Björn Malte Schäfer

non-extensivity of gravity



source: Kerson Huang, statistical physics

- gravitational interaction is long-reached
- gravitational binding energy per particle is not constant for $n \rightarrow \infty$

structure formation equations

cosmic structure formation

structure formation is a self gravitating, fluid mechanical phenomenon

continuity equation: evolution of the density field due to fluxes

$$\frac{\partial}{\partial t}\rho + \operatorname{div}(\rho\vec{v}) = 0 \tag{4}$$

• Euler equation: evolution of the velocity field due to forces

$$\frac{\partial}{\partial t}\vec{v} + \vec{v}\nabla\vec{v} = -\nabla\Phi \tag{5}$$

Poisson equation: potential sourced by density field

$$\Delta \Phi = 4\pi G \rho \tag{6}$$

3 quantities, 3 equations → solvable

• 2 nonlinearities: $\rho \vec{v}$ in continuity and $\vec{v} \nabla \vec{v}$ in Euler-equation Björn Malte Schäfer formation of the cosmic large-scale structure

regimes of structure formation

look at overdensity field $\delta \equiv (\rho - \bar{\rho})/\bar{\rho}$, with $\bar{\rho} = \Omega_m \rho_{crit}$

- analytical calculations are possible in the regime of linear structure formation, $\delta \ll 1$

 \rightarrow homogeneous growth, dependence on dark energy, number density of objects

• transition to non-linear structure growth can be treated in perturbation theory (difficult!), $\delta \sim 1$

 \rightarrow first numerical approaches (Zel'dovich approximation), directly solvable for geometrically simple cases (spherical collapse)

 non-linear structure formation at late times, δ > 1
 → higher order perturbation theory (even more difficult), ultimately: direct simulation with *n*-body codes

linearisation: perturbation theory for $\delta \ll 1$

- move from physical to comoving frame, related by scale-factor a
- gradients: $\nabla \to a^{-1}\nabla$, Laplace: $\Delta \to a^{-2}\Delta$
- use density $\delta = \Delta \rho / \rho$ and comoving velocity $\vec{u} = \vec{v} / a$
 - linearised continuity equation:

$$\frac{\partial}{\partial t}\delta + \mathrm{div}\vec{u} = 0$$

• linearised Euler equation: evolve momentum

$$\frac{\partial}{\partial t}\vec{u}+2H(a)\vec{u}=-\frac{\nabla\Phi}{a^2}$$

Poisson equation: generate potential

$$\Delta \Phi = 4\pi G \rho_0 a^2 \delta$$

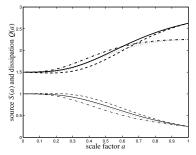
Björn Malte Schäfer

- structure formation is homogeneous in the linear regime, all spatial derivatives drop out
- combine continuity, Jeans- and Poisson-eqn. for differential equation for the temporal evolution of δ:

$$\frac{\mathrm{d}^2\delta}{\mathrm{d}a^2} + \frac{1}{a} \left(3 + \frac{\mathrm{d}\ln H}{\mathrm{d}\ln a}\right) \frac{\mathrm{d}\delta}{\mathrm{d}a} = \frac{3\Omega_M(a)}{2a^2}\delta \tag{7}$$

- growth function $D_+(a) \equiv \delta(a)/\delta(a = 1)$ (growing mode)
 - position and time dependence separated: $\delta(\vec{x}, a) = D_+(a)\delta_0(\vec{x})$
- for standard gravity, the growth function is determined by H(a)

terms in the growth equation

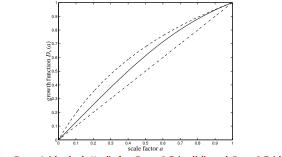


source (thin line) and dissipation (thick line)

- two terms in growth equation:
 - source Q(a) = Ω_m(a): large Ω_m(a) make the grav. fields strong
 - dissipation $S(a) = 3 + d \ln H/d \ln a$: structures grow if their dynamical time scale is smaller than the Hubble time scale 1/H(a)

nonlinearity

growth function



 $D_+(a)$ for $\Omega_m = 1$ (dash-dotted), for $\Omega_{\Lambda} = 0.7$ (solid) and $\Omega_k = 0.7$ (dashed)

• density field grows $\propto a$ in $\Omega_m = 1$ universes, faster if w < 0

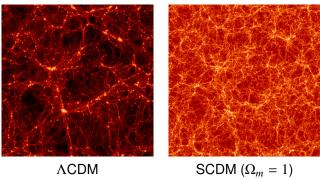
Björn Malte Schäfer

nonlinearity

correlation functions

summary

nonlinear density fields



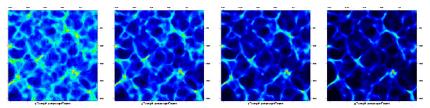
source: Virgo consortium

- dark energy influences nonlinear structure formation
- how does nonlinear structure formation change the statistics of the density field?

(nonlinearity)

summary

sequence of structure formation

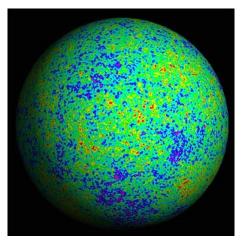


time sequence of structure formation

Björn Malte Schäfer

summary

inflationary fluctuations in the CMB



source: WMAP

Björn Malte Schäfer

probability density for 1 point

- · density of matter is the result of a random experiment
- quote probability density $p(\delta)d\delta$ for measuring $\delta(\vec{x})$ at a random position \vec{x}
- we find that this probability density is Gaussian:

$$p(\delta)d\delta = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{\delta^2}{2\sigma^2}\right)d\delta$$

with variance $\sigma^2 = \langle \delta^2 \rangle$

variance can be determined with a spatial integration

probability density for 2 points

- what about a second position? does it have an independent probability $\delta_2 = \delta(\vec{x}_2)$?
- no! the probability for finding δ_2 at \vec{x}_2 depends on the value δ_1 at \vec{x}_1
- we need a joint random process
- formulate this joint process as a Gaussian probability density for 2 variables:

$$p(\delta_1, \delta_2) \mathrm{d}\delta_1 \delta_2 = \frac{1}{\sqrt{(2\pi)^2 \mathrm{det}(C)}} \exp\left(-\frac{1}{2} \sum_{ij} \delta_i C_{ij}^{-1} \delta_j\right)$$

• with the covariance matrix C:

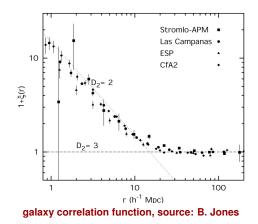
$$C = \begin{pmatrix} \langle \delta_1^2 \rangle & \langle \delta_1 \delta_2 \rangle \\ \langle \delta_1 \delta_2 \rangle & \langle \delta_2^2 \rangle \end{pmatrix}$$

- if the distribution of matter has homogeneous statistical properties, $\langle\delta_1^2\rangle=\langle\delta_2^2\rangle$
- define correlation function $\xi(\vec{x_1}, \vec{x_2}) = \langle \delta_1 \delta_2 \rangle$
- if the field is homogeneous again, the correlation function only depends on the distance $r = |\vec{x}_1 \vec{x}_2|$
- rewrite covariance matrix:

$$C = \left(\begin{array}{cc} \langle \delta^2 \rangle & \xi(r) \\ \xi(r) & \langle \delta^2 \rangle \end{array}\right)$$

- if *ξ*(*r*) = 0, the 2 points have independent amplitudes and the Gaussian separates
- if ξ(r) ≠ 1, the amplitude at x
 ₁ is not independent from the amplitude at x
 ₂, and the field is less random

examples of correlation functions



• correlation function is a declining power law with slope 2, $\xi(r) \propto r^{-2}$

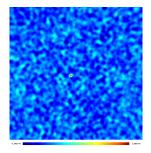
Björn Malte Schäfer

nonlinearity

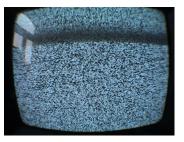
correlation functions

summary

statistics: correlation function and spectrum



finite correlation length



zero correlation length

correlation function

quantification of fluctuations: correlation function $\xi(\vec{r}) = \langle \delta(\vec{x}_1)\delta(\vec{x}_2) \rangle$, $\vec{r} = \vec{x}_2 - \vec{x}_1$ for Gaussian, homogeneous fluctuations, $\xi(\vec{r}) = \xi(r)$ for isotropic fields

Björn Malte Schäfer

statistics: correlation function and spectrum

• Fourier transform of the density field

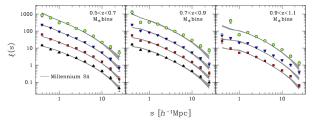
$$\delta(\vec{x}) = \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \,\delta(\vec{k}) \exp(i\vec{k}\vec{x}) \leftrightarrow \delta(\vec{k}) = \int \mathrm{d}^3 x \,\delta(\vec{x}) \exp(-i\vec{k}\vec{x}) \tag{8}$$

• variance $\langle \delta(\vec{k}_1)\delta^*(\vec{k}_2) \rangle$: use homogeneity $\vec{x}_2 = \vec{x}_1 + \vec{r}$ and $d^3x_2 = d^3r$

$$\langle \delta(\vec{k}_1)\delta^*(\vec{k}_2)\rangle = \int d^3r \,\langle \delta(\vec{x}_1)\delta(\vec{x}_1 + \vec{r})\rangle \exp(-i\vec{k}_2\vec{r})(2\pi)^3 \delta_D(\vec{k}_1 - \vec{k}_2)$$
(9)

- definition spectrum $P(\vec{k}) = \int d^3r \langle \delta(\vec{x}_1)\delta(\vec{x}_1 + \vec{r}) \rangle \exp(-i\vec{k}\vec{r})$
- spectrum $P(\vec{k})$ is the Fourier transform of the correlation function $\xi(\vec{r})$
- homogeneous fields: Fourier modes are mutually uncorrelated
- isotropic fields: $P(\vec{k}) = P(k)$

examples of correlation functions



galaxy correlation function, source: VIPER-survey

 very good agreement of measured correlation functions with dark matter simulations and galaxy formation models

why correlation functions?

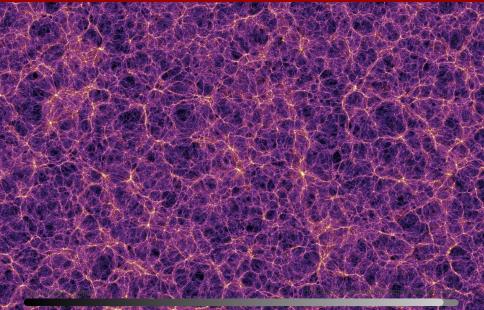
a proof for climate change and global warming

please be careful: we measure the correlation function because it characterises the random process generating a realisation of the density field, not because there is a badly understood mechanism relating amplitudes at different points! (PS: don't extrapolate to 2014!) nonlinearity

correlation functions)

summary

the cosmic web (Millenium simulation)



summary

- inflation generates seed fluctuations in the (dark) matter distribution
- fluctuations form a random field
- description with correlation function $\xi(r)$
- structures grow by self-gravity